
J. Appf. Mathshfechhs Vol. 51, No. 2, pp. 34%353,1993 
Printed in Great Britain. 

0021-8928/93 $24.00+.00 
6 1993 Pergamm Pms Ltd 

SINGULAR PERTURBA~ONS USED TO SOLVE 
THE EQUATIONS OF THERMOELASTICITY IN A 
CROSS-SECTION OF A ROTATING CYLINDER? 

~.I.L~AvIN and N.I. SHESTAKOV 

Cherepovets 

(Received 5 August 1991) 

An analysis is made of the ho-dimensional stressed state in a cross-section of a cylinder rotating at 

constant angular velocity and experiencing thermal disturbances due to convective and radiative beat 

exchange with the external medium. Tbe stress equations are used in the approximation of the 

uncoupled theory of thermoelasticity. Asymptotic formulae are derived for the stresses in terms of the 

small parameter l/d(Pd) ( w h ere Pd is the Predvoditelev criterion). They enable one to take into 

account the varying nature of the heat-exchange coefficients along the perimeter of the cylinder, to 

form a qualitative picture of the stress distribution in the boundary-layer strip and in the rest of the 
domain, and to show that the stress state is determined by the non-axisymmetrical part of the 

temperature field. 

IN A PREVIOUS study [l]$ one of us constructed formulae to calculate the temperature in a cross-section of a 

cylinder of radius R, rotating at a fiied angular velocity co and interacting with the external medium as 

governed by the law of radiative and convective heat exchange. We shall derive asymptotic formulae for 

the thermal stresses that arise in the cylinder, using the uncoupled theory of thermoelasticity [2]. 
In the laboratory system of polar coordinates (p, cp) under quasi-steady conditions, the temperature 

T( p, cp) at a point of the cross-section with physical coordinates (Rp, cp) satisfies the equation [l] 

~ITI&=E'A~,~T, O<p<l, q1~[0,21~] (W 

the boundary condition 

and the condition of continui~ as p + 0 
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where 
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c2 = U’W1 = a / (a~~>, btQ) = CZ,(~)R / A 

++‘) = 0, (Q)R / 1, p(T) = T4 

where a is the thermal diffusivity, Pd is the Predvoditelev criterion, b(Q) is the Biot criterion, h is the 

thermal conductivity, ak(Q) is the heat transfer coefficient, T,(Q) is the temperature of the medium with 
which the cylinder is exchanging heat convectively, o,(Q) is the radiative heat exchange coefficient and 
T,(Q) is the temperature of the medium with which the cylinder is exchanging heat by radiation. 

The stresses in the cylinder cross-section will be determined in the two-dimensional deformed state 

approximation [2], using the stress function F(p, Q), by the formulae 

(0.4) 

while F itself will be determined as the solution of the equation of the uncoupled quasi-steady theory of 

thermoelasticity 

A;,9F+CAp,PT=0, O<p<l, QE[0,2ff] (0.5) 

satisfying the boundary conditions on the free surface 

F=aF/ap=O, p=i, ~E[O,Z!R) (0.6) 

and the boundedness conditions for the derivatives appearing in (0.4). 
In Eq. (0.5) C=a,(l-v)-‘E, a, is the coefficient of linear thermal expansion, v is Poisson’s ratio, and 

E is Young’s modulus. 
The coefficient E in Eq. (0.1) is a small parameter in the case of cylinders and rollers in metallurgical 

machinery [3]. this fact will be used to construct a solution of system (O.l), (0.2), (0.5) and (0.6). 
From now on all functions considered will be 2x-periodic in Q. 

1. CONSTRUCTION OF A FORMAL ASYMPTOTIC EXPANSION 

According to the general theory [4], we are looking for an expansion of the function T in the 
form 

T(e,p,~)=U(e,~,(~)+V(~,r,cp)=~~~”~.@,’~)+~~~~u,(r,cp). r=? (1.1) I r; 

where U and V are the regular and boundary-layer parts of the expansion, so that Iu,(r, 
cp> I< Cl exp(-C,r), r > 0, Cl, C, > 0. 

We know [l] that the functions u, = const and U, are found from the equations 

(M%o + (N+9)B(lc, I= (f(cp)) 0.2) 

(Ncp) + ~(cp)b’@o I>& = -(u,(O,cp)(b(cp)+a(cp)B’(u,)))+(P,(cp)), n = 1,2,... (1.3) 
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n-2 
+ z (n - 2 - k)r”-2-k 

a2 

k=l 
&% r>O, cpE[O,2A) 

ht 
7 = N(P)% + o(cp)b(uo) - f(q), r = 0, cp E [0,2A) 
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(1.4) 

(1.5) 

2 = @(cp) + mPm4d)(%, +>lJn-,) + 4-1 (cp), r = 0, cp E [O, 27c) 

p = ~B’k’(ug)Q II 
k=2 

n,k* (p.(cp))=$ja,(@@ 
0 

where q,, t are polynomials in the variables u, + u,(O, <p) (I = 1, . . . , n - 1) of degree k. The sum 
in (1.4)-and throughout what follows-is, by definition, zero if the lower index of summation 
exceeds the upper one. 

Under the conditions 

Wcp), f-J(q) a 0, (me) + (NP)) > 0 (l-6) 

(1.7) 

Eq. (1.2) has a unique positive solution u, >O; It then follows from (1.6) that (b(q)+ 
ok) > 0 and u, (n = 1, 2, . . . ) are then uniquely determined from Eqs (1.3) Thus, the 
terms of the asymptotic series (1.1) are found successively: u, from (1.2) then u, from (1.4) 
and (l.S), u, from (1.3), u, from (1.4) and (1.5); and so on. 

By analogy with (l.l), we construct an expansion of F(p, cp) as 

W-0 

1 g, (r, cp)l< C, exp(-C,r), r > 0 (1.9) 

where H is the regular part and G the boundary-layer part of the expansion. 
Assuming that Eq. (0.5) holds separately for the regular part of the expansion H, we obtain 

equations for h, 

A$,&,=O~ O<p<I, Q,E[~,~x), n=2,3 ,... (1.10) 

For the boundary-layer part G, we rewrite Eq. (0.5) in the form AP, ,JAP, ,G + CV) = 0 and satisfy 
the simpler equation A, ,G + CV = 0, from which we obtain equattons for g,, 

a2 
F8” 

=-CU,,_~-Q,, n=3,4 ,..., r>O, ~~[0,2rr) 

Q,, = - i rn-’ $ &_, + i (n - k)r”-’ <&!k_2 
k=4 k=5 acp 

(1.11) 

(1.12) 

We will write the solution of Eq. (1.11) satisfying an estimate of the form (1.9) as follows: 

g,(r,cp)=-i(s-r)[Cu,-z(S,cp)+e,cs.cp)ldS, n=3,4 )...( r>o, (pE[0,2rc] (1.13) 
r 

Substituting the expansion (1.8) into the boundary condition (0.6), we obtain the boundary 
conditions for the functions h. 

h,(L(p)=O, h,,(l,cp)=-g,,(O,cp), n=3,4..., ~E[O,~A) (1.14) 

$MW = +,,+i(O,cp), n = 2,3,..., cp E ]0,2rc) (1.15) 
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One can then successively determine the coefficients of (1.8): g, from (1.13), then h2 as a 
bounded solution of problem (l.lO), (1.14) and (1.15) g, from (1.13), then h3 from (1.10) 
(1.14) and (1.15), and so on. 

It follows from the way in which the parts of the expansion (1.8) were determined that G is 
the thermoelastic part and H the elastic part of the series for the stress function [2]. 

2. JUSTIFICATION OF THE ASYMPTOTIC EXPANSION 

In Cartesian coordinates X=(X,, n,), x1 =pcoscp, X, =psincp, we put R= [(x1, .Q): 
x,” + ix,” c I}, I = a/Q. The following asymptotic approximations will be taken for T and F 

TN(E,X)=TN(E,P~~~(P,~S~~(P)=U~(E)+Y’(P)V~(E,~,(P)= 

= 4 en&, + Y(P)*!;“% (r, 9) (2.1) 

FN(E,X)=FN(E,PCOS~~,~~~~<~)=HN(E,P,(P)+Y(~)G~(E,~,(P)= 
N+l N+2 

= x E”&(p,@+ y(p) x E”g,(r,(P), A7 = 0,1,2,... 
n=2 n=3 (2.2) 

where WP)ECW, l)], Y(p)=0 and p~[0, X], Y(p)= 1 for p~[x, 11, 06 Y(p)< 1. The 
residuals of the exact solutions T(E, n) and F(E, x) and their approximations (2.1) and (2.2) 

@N(E,X)=T(E,X)--N(E,X), ~FN(E,x)=F(E,x)-FN(~,x) (2.3) 

are solutions of the equations 

-E’A~(~TN)+~~(~TN)~~ =-WI, XCR 

a2 a2 
4(x)=--x2, 4(x)=x,. AX =2+,2 

ax, 2 

&(6FN)+CA,(6TN)=-W2, XER 

satisfying the boundary conditions 

$+cx(x)+o(x)~‘(~) &TN =-Ws, XEI- 

6FN = -EN+2gN+2, $(aF,)=O, XE~ 

where 

4 (GX) = (a / a9 - E’Ap,cp )(v(P)v~ (E, Tr 9)) 

Wzkx) = A~w(P)G~(EJ.(P))+ CUw(p)V, (e,~)) 

W3(E,X) = w3(E,COSCp,SillCp) = ‘TN(E.&C~)+ 
aP 

+a(cp)T~ (E, 1, CP) + ~(cp)B(h) - f(g) + o(cP)@(&I (E, Lcp) + 

+a’)-B’(%)o* -~(~)), CO* =STN 

v = v(x) is the unit vector along the outward normal to r at x. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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We introduce the auxiliary function by 

and set 

y(x) = SF, + EN-=&+2 (2.9) 

We then obtain an equation for y(x) from (2.5) 

A;y = -CA,(STN) - W2 + eN+=A:gi+2, x E n (2.10) 

with zero boundary conditions 

y=o, aylav=O, XEl- (2.11) 

We now estimate II y IIdt, . Multiplying Eq. (2.10) by y, integrating by parts over Q subject to 
condition (2.11) and using the form of the function W,, we write 

] (A,y)= dx = Ed+= I (A,Y)(A,&+z )h - C j (A,Y)~TN~ - 
n n n 

-I(A,Y)(A,(YGN)+~\~VN)~~ 
n 

Using Cauchy’s inequality and the inequality [5] 

(2.12) 

which holds by conditions (2.11), we derive the following estimate from (2.12) 

+lAx(yGN)+ mvNIL2(n)) = Al(EN+2zl + cz2 + z3) (2.13) 

We must now estimate II, I, and Z3 in (2.13) To estimate ZJ, we use the definitions of GN 
and V, in (2.1) and (2.2) and write 

Ax (WN > + ~VN = Y’(P)(P-‘GN(E,~,~~)+~~GN(E.T,(P)+ 
aP 

+,,-2 Ni3rN-n+l 

n=3 

Using the properties of Y(p), we deduce from (2.14) that 

(2.14) 

13 d EN+14;; Y(p)r”-” +“+I +$n+, 
-I ( a(p )I 

+ 
L2W 
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Assuming that the functions g, satisfy the estimates 

(ra0, n=3, *.., N + 2) we infer from (2.15) that 

I, d Ed+‘& i-A7 exp(-4(3ef-‘)< ~~+r~g 

where 4, A, and & depend only on Ad, 4 and N. 
To estimate II, we note that, by (2.8) 

a* +~-2y(&j-$ gN+2 to, d 

(2.16) 

(2.17) 

(2.18) 

Therefore 

4 s 4 (2.19) 

where Ap depends only on A4 (see (2.16)) 
To estimate I2 and justify inequality (2.16), we need a corollary of Sec. 5 in the paper cited in 

the footnote. 

Lemma 1. Let the functions b(cp), o(q), T,(g), T,(q) in (0.2), (0.3) be 2x-periodic and 
absolutely continuous; assume that their derivatives are of bounded variation in [0, 27~1 and 
that conditions (1.6) and (1.7) are satisfied. Then for any integer NI 3 0 there exists E, > 0 such 
that,for eo(O, EJ (N=O, l,..., NJ, the residual 6TN defined in (2.3) and satisfying Eqs (2.4) 
and (2.6) also satisfies the estimate 

and the functions u,(f, cp) (n=t, 2, . . . , NJ defined 
inequalities 

(2.20) 

by Eqs (1.4) and (1.5) satisfy the 

Estimate (2.16) follows from (2.21) in Lemma 1 and formulae (1.12) and (1.13) (the 
definition of g,,(r, 9)). Inequalities (2.17), (2.19) and (2.20), applied to (2.13), give 

IMW~~fl, s E N+1A,3, E o V&,1 (2.22) 

Using Eq (2.9) and inequaIity (2.22) we obtain 
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(2.23) 

where the bound 

G A,43~N+1 + A1.,~N+2 S AIS~N+l, E E (0.~~1 

* II N+2 I&) 
s 44 

is established by using a representation of type (2.18) for the derivatives of gz+2. 
We can thus formulate the following estimation theorem. 

Theorem 1. With the same assumptions as in Lemma 1, for any integer NI 2 0 there exists 
E, > 0 such that the stress function F(E, x) admits of an asymptotic representation (2.3), where 
&(c, x) satisfies inequality (2.23) with a constant Al5 independent of N = 0, 1, . . . , N,, E E (0, 
d. 

3. ASYMPTOTIC FORMULAE FOR THE STRESSES 

Using (0.4), we can write the principal terms of the asymptotic expansions for the stresses 

(3.1) 

(3.2) 

(3.3) 

where r = (l-p)/&, formulae (3.1) and (3.3) are of accuracy O(E~), and formula (3.2) is of 
accuracy 0(e2) in a boundary layer of thickness of O(E~), and of accuracy 0(c3) in the 
remainder of R. The solution of Eqs (1.4) and (1.5) for u, may be expressed as follows [6]: 

Ul(&(P) = ~:lII;(r)cos~~+ u;(+n@ 

u:(r)=exi-m ){, ( ’ r k skTS;)cos(~r)+(S:f5;)sin(~r)}/~ 

where c;, ci are the Fourier coefficients of <((p) = by, +a(cp)B(&) -f(q). Expressing the 
function g, in accordance with formula (1.13) and determining h, from Eqs (l.lO), (1.14) and 
(1.15) we can write the stresses (3.1)-(3.3) as follows: 

up(p,cp)=E2c p5;(c~~-sing)+~k~2~-l*~~k-2x 
I E 

X (k(A-l)(l-p2)+2p+os&Mn~~)- 

(3.4) 
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+~~~;k-‘p’-*((k+2)(k+ l)p2 -k(R - l))(coskcp- sinkp)) 
= 

ap~@,(P)=e2C{p~~(c0s~+sincp)+2~‘~~~~~~~*((k+1)p2-~+1)x 
= 

x(cos~~+sinRqJ)+ ~R(s;(r)cosR~-g:(r)s~~~) 
k-l 

(3.5) 

(3.6) 

By Saint-Venant’s principle, if the front surface of the cylinder is free of loads, we obtain the 
following expression for the axial stresses a,@, cp) in the cylinder cross-section, accurate to 
within O(E*) . 

CT, = -ecu, (r, cp) (3.7) 

4. CALCULATION OF THERMAL STRESSES IN A ROLLER OF 
A CONTINUOUS BLANK CASTING 

The rollers of a continuous blank casting, being in contact with incandescent metal, from which they 
receive a powerful heat flux due to both direct contact and radiation, experience substantial thermal 

stresses. 

Let us apply the above computational formulae to calculate the thermoelastic stresses in a solid roller 

of diameter 0.38 m, for a machine operating in the converter department of the Cherepovets Metallurgical 

Complex, where the necessary natural measurements were carried out. 

- 
u,, Pax 10’ 

FKi.2 Fx3.3. 
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