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SINGULAR PERTURBATIONS USED TO SOLVE
THE EQUATIONS OF THERMOELASTICITY IN A
CROSS-SECTION OF A ROTATING CYLINDERfY

M. 1. LETAVIN and N. 1. SHESTAKOV
Cherepovets

(Received 5 August 1991)

An analysis is made of the two-dimensional stressed state in a cross-section of a cylinder rotating at
constant angular velocity and experiencing thermal disturbances due to convective and radiative heat
exchange with the external medium. The stress equations are used in the approximation of the
uncoupled theory of thermoelasticity. Asymptotic formulae are derived for the stresses in terms of the
small parameter 1/Y(Pd) (where Pd is the Predvoditelev criterion). They enable one to take into
account the varying nature of the beat-exchange coefficients along the perimeter of the cylinder, to
form a qualitative picture of the stress distribution in the boundary-layer strip and in the rest of the
domain, and to show that the stress state is determined by the non-axisymmetrical part of the

temperature field.

In a prEVIOUS study [1]} one of us constructed formulae to calculate the temperature in a cross-section of a
cylinder of radius R, rotating at a fixed angular velocity @ and interacting with the external medium as
governed by the law of radiative and convective heat exchange. We shall derive asymptotic formulae for
the thermal stresses that arise in the cylinder, using the uncoupled theory of thermoelasticity [2].

In the laboratory system of polar coordinates (p, ¢) under quasi-steady conditions, the temperature
T(p, @) at a point of the cross-section with physical coordinates (Rp, ¢) satisfies the equation [1]

9T /dp=€2A, ,T, 0<p<l, @&[0,2n]

d

adf
Ap.o=Pl'5;;( »

the boundary condition

%T+b(<p)T+0(¢)B(T)=f(‘9)* P

and the condition of continuity as p—> 0
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lim p—=0,
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where

e =(Pd)" =a/(aR?),  b(g)= o0, (P)R/A
o(e)=o,(9)R/X, B(T)=T*

f(®) = b(9)T,.(9) +0(@)B(T,(9)) (03)

where a is the thermal diffusivity, Pd is the Predvoditelev criterion, b(¢) is the Biot criterion, A is the
thermal conductivity, o,(@) is the heat transfer coefficient, 7,(¢) is the temperature of the medium with
which the cylinder is exchanging heat convectively, ©,(¢) is the radiative heat exchange coefficient and
T,(o) is the temperature of the medium with which the cylinder is exchanging heat by radiation.

The stresses in the cylinder cross-section will be determined in the two-dimensional deformed state
approximation [2], using the stress function F(p, ¢), by the formulae

N I 9’ 3 _
o, =p "'-‘_$F+p 2571’, o,,:a—pi-F, cp,=—$p1% (0.4)

while F itself will be determined as the solution of the equation of the uncoupled quasi-steady theory of
thermoelasticity

AL JF+CA, T =0, 0<p<l, ¢€[0:2n] ©5)

satisfying the boundary conditions on the free surface
F=0F[dp=0, p=1, o¢€[0,2n) (0.6)

and the boundedness conditions for the derivatives appearing in (0.4).

In Eq. (0.5) C=0a,(1-V)'E, o, is the coefficient of linear thermal expansion, v is Poisson’s ratio, and
E is Young’s modulus.

The coefficient € in Eq. (0.1) is a small parameter in the case of cylinders and rollers in metallurgical
machinery [3]. this fact will be used to construct a solution of system (0.1), (0.2), (0.5) and (0.6).

From now on all functions considered will be 2n-periodic in ¢.

1. CONSTRUCTION OF A FORMAL ASYMPTOTIC EXPANSION

According to the general theory [4], we are looking for an expansion of the function T in the
form

TEp=UEp0+VEre= Seneo+ Ievee. r=—2 )

where U and V are the regular and boundary-layer parts of the expansion, so that [v,(r,
¢) < C exp(-Cyr), r>0, C,, C,>0.
We know [1] that the functions u, = const and v, are found from the equations

(B(0))up +{0())B(xy) = (£ (9)) (12)
(b(@) + (@B (1)), = ~{0,,(0,0)(b(P) + (PP (o)) + (P (@), n=12,.. (13)

d d _ .l n-—l—ki
My, = ( 30 37 )u,, = kglr 5t
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+:};::(n—2-k)r"'2"‘ ai(:ﬁ-ok, r>0, ¢e€[0,2n) (14)
R4 = b(gYin + @B~ £@). r=0, PE[0.20) (15)
o
5 = (b(@)+ (@B ()1 +9,1)+ P 1 (@), 7=0, ¢e[0,27)
Bo= 38 W) gus. (R(®)=== [P, (9)do
k=2 2n
where g, , are polynomials in the variables u,+v,(0, ¢) (!=1,..., n—-1) of degree k. The sum

in (1.4)—and throughout what follows—is, by definition, zero if the lower index of summation
exceeds the upper one.
Under the conditions

b(@), o(@)=0, (b(9))+(c(p))>0 (1.6)
T.(9), T, (9)>0 1.7)

Eq. (1.2) has a unique positive solution u,>0; It then follows from (1.6) that (b(p)+
o(p)P(y))>0 and u, (n=1, 2,...) are then uniquely determined from Eqs (1.3) Thus, the
terms of the asymptotic series (1.1) are found successively: u, from (1.2), then v, from (1.4)
and (1.5), w, from (1.3), v, from (1.4) and (1.5); and so on.

By analogy with (1.1), we construct an expansion of F(p, ¢) as

FE.p )= HEPN+GEr 9= Teh 0.0+ Ses,.0) (18)
18, (r,@)I< C,exp(-Cyr), r>0 1.9)

where H is the regular part and G the boundary-layer part of the expansion.
Assuming that Eq. (0.5) holds separately for the regular part of the expansion H, we obtain
equations for A,

Aot =0, 0<p<l, 9e[0,27), n=23,.. (1.10)

For the boundary-layer part G, we rewrite Eq. (0.5) in the form A, (A, ,G +CV) =0 and satisfy
the simpler equation A, ,G+CV =0, from which we obtain equations for g,

2
587{3,=—CU”_2—Q,,, n=34,., r>0, ¢e[0,2x) (1.11)
no_ P n 2
Q. =“k§4’ kggk—l "’Es("-k)’"—k'a%g -2 (1.12)

We will write the solution of Eq. (1.11) satisfying an estimate of the form (1.9) as follows:

8,. (rs ¢) = -.I.(G - r)[cun—2 (Q, (P) + Qn (go ¢)]d§, n= 3v4v- > 07 ‘P € [0,21[] (113)

Substituting the expansion (1.8) into the boundary condition (0.6), we obtain the boundary
conditions for the functions 4,

h(L9)=0, h,(19)=-£,0,¢), n=34.., 9e[0,2n) (1.14)

d 0
a—ph,.(l,q) —--ajg.m((),tp), n=23,..., 9€l0,2n) (1.15)
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One can then successively determine the coefficients of (1.8): g, from (1.13), then A, as a
bounded solution of problem (1.10), (1.14) and (1.15), g, from (1.13), then A, from (1.10),
(1.14) and (1.15), and so on.

It follows from the way in which the parts of the expansion (1.8) were determined that G is
the thermoelastic part and H the elastic part of the series for the stress function [2].

2. JUSTIFICATION OF THE ASYMPTOTIC EXPANSION

In Cartesian_coordinates x=(x,, x,), X =pcosg, x,=psing, we put Q={(x,, x,):
x] +x} <1}, T'=Q/Q. The following asymptotic approximations will be taken for T and F

Ty(e,x)=Ty(e,pcos@,psin @) = Uy (e)+ ¥(p)Vy(,r.0) =

N N
= g‘,oe:"u,I +%¥(p) 2_:18"0,, r,9) 21

Fy(g,x) = Fy(g,pcos@,psin@) = Hy (€,p,9) + ¥(P)Gy(e,r,9) =

N+1 n N+2 n
= ):‘,zs h,(p,9)+¥(p) ;38 g.(r,¢), N=0,1,2,.. (2.2)

where ¥(p)eC~([0, 1)], ¥(p)=0 and pel0, ¥%], Y(p)=1 for pe[#, 1], 0<¥(p)<1. The
residuals of the exact solutions 7'(g, x) and F(g, x) and their approximations (2.1) and (2.2)

Ty (e, x)=T(e,x) - Ty(e,x), 8Fy(e,x)=F(g,x)-Fy(€,x) (23)
are solutions of the equations
-e2 A, (8Ty) + b;(3Ty),, =-W;, x€Q 24)
2 9

bl(x)=_x2, bz(X)=xl, sz—a—x?'f'—ax—%
AL (8Fy )+ CA, (8Ty)=-W,, xeQ (2.5)

satisfying the boundary conditions

(—(% +o(x)+ o (x)p (uy ))STN =-W,, xeT (2.6)

8Fy = —M2gy.,, %(SFN) =0, xeT @)

where
Wi(e,x) = (3/ 09 - €A, o XY (PIVN E.T.9))
W, (€,%) = AL (W(P)Gy (€.7,9)) + CA, (W (P)Vy (.7, 9))
W (e, x) = Wi (€,c05,5in ) = B%TN (e,L9)+
+o(@)Ty (&,1,9) + o(@)B(ug) - £(9) + S(@)P(Ty (e, 1, 0) +
+0") = B(up)0” —Biy)}, @ =8Iy

v=v(x) is the unit vector along the outward normal to T at x.
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We introduce the auxiliary function by
8n+2(X) = gr42(PCOSP,PSin @) = g2 (0,9,)¥(p), x€Q (2.8)
and set
y(x)=8Fy +e" gy, (29)
We then obtain an equation for y(x) from (2.5)
Ay=-CA, (8Ty)-Wy +eV**Algy.,, x€Q (2.10)
with zero boundary conditions
y=0, dy/ov=0, xeTI (2.11)

We now estimate iyl \é - Multiplying Eq. (2.10) by y, integrating by parts over Q subject to
condition (2.11) and using the form of the function W,, we write

(Il (A y)dx =2 (I] (A, Y)(As8N42)dx-C ‘I] (A,y)8Tydx -

—[(A )AL (¥Gy)+ C¥Vy)dx (2.12)
Q
Using Cauchy’s inequality and the inequality [S]
) b
Ilyllwg(ms Al(‘j)(A,,J') dx)
which holds by conditions (2.11), we derive the following estimate from (2.12)

Iy Iwzz @ <4 " IA,g;, +2 "[?(n) t CISTN “1}(0) +

+A,(¥Gy)+ C\PVNILZ(Q)) = A"+ CL+ 1) (2.13)

We must now estimate I, I, and I, in (2.13) To estimate I,, we use the definitions of G,
and V,, in (2.1) and (2.2) and write

A, (WGy) +C¥Vy = ¥ (p)p~Gy(e,r, 0)+ %GN(s,r,cp) .
+~P"(p)G~(e,r,<p>+e”+‘~1'(p)[—p" Dl s aigm "
n=2 r

+ 2
+p—2 N23 rN_n+l (;QT & J(l + (N -n+ l)p)] (2.14)

n=3

Using the properties of ¥(p), we deduce from (2.14) that

+

N+l . 9 9?
L<e¥a'y I‘I‘(p)r” (""‘&m +——2—g..+1)
nsl or 9 2@




350 M. I. LETAVIN and N. . SHESTAKOV

N+2 , , a ”
4 T {I‘I’ OTAX) P, +H‘I‘ ©) =2 (r. (?)s:?(m +[¥"(p)g, (r, (?)"1}(9)} (2.15)
Assuming that the functions g, satisfy the estimates
=, 3 2 ? 2
{{g,tr,cpw[ggn(w)] +(Wg,,(mp)} do< A, exp(-Asr) (216)
(r=0, n=3, ..., N+2), we infer from (2.15) that
L<eVMA + A, exp(-A5 (3e)! )s eVl 217

where A, A,and A, depend only on A,, As and N.
To estimate I,, we note that, by (2.8)

B8y = Ao (gm-z (o, ‘P)‘P(P)) = gnaa2 (0, ‘P)P_l ‘a%( ‘% ‘P(P))*
# (2.18)
+p"‘1‘(p)372 gn+2(0,9)

Therefore
L <A (2.19)

where A, depends only on A, (see (2.16))
To estimate I, and justify inequality (2.16), we need a corollary of Sec. 5 in the paper cited in
the footnote.

Lemma 1. Let the functions b(¢), 6(9), T,(¢), T,(¢) in (0.2), (0.3) be 2=-periodic and
absolutely continuous; assume that their derivatives are of bounded variation in [0, 2n] and
that conditions (1.6) and (1.7) are satisfied. Then for any integer N, =0 there exists €, >0 such
that, for e€(0, g,] (N=0,1,..., N,), the residual 87, defined in (2.3) and satisfying Egs (2.4)
and (2.6) also satisfies the estimate

BTl q) = g™ (2.20)

and the functions v,(r, ¢) (n=1, 2, ..., N,) defined by Egs (1.4) and (1.5) satisfy the
inequalities

2x 2 o] 2 32 2

gv,, (r. @)+ (5 v,(r, q))) + (W— &n (r,cp)] dp < A exp(—Apr), r=0 (2.21)
Estimate (2.16) follows from (2.21) in Lemma 1 and formulae (1.12) and (1.13) (the

definition of g,(r, 9)). Inequalities (2.17), (2.19) and (2.20), applied to (2.13), give

vz <€A €€(0.8] 2.22)

Using Eq (2.9) and inequality (2.22) we obtain
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| lezz(n) 'y"W}(m lgN”nwf(m
2.23)
< AgeM 4 AL e < AN, ee(0,80)

where the bound

*
<A
klwz“w%(m

is established by using a representation of type (2.18) for the derivatives of g:+2.
We can thus formulate the following estimation theorem.

Theorem 1. With the same assumptions as in Lemma 1, for any integer N, =0 there exists
g, >0 such that the stress function F(g, x) admits of an asymptotic representatlon 2. 3) where
8F, (s, x) satisfies inequality (2.23) with a constant A;; independent of N=0,1,..., N,, e€(0,

€]
3. ASYMPTOTIC FORMULAE FOR THE STRESSES

Using (0.4), we can write the principal terms of the asymptotic expansions for the stresses

°p(p,¢)=ez[p“(-a%+p )hz(P»‘P) = &l ¢)] (1)
3? 2 22

So(P9) =237 8s(r.0) + e 57 (e, 0) (32)

°w(p.¢)=82[—$( 12 hz(p,qr)) 399 ——g(r, ¢)} (3.3)

where r=(1-p)/e, formulae (3.1) and (3.3) are of accuracy O(g*), and formula (3 2) is of
accuracy O(g®) in a boundary layer of thickness of O(e?), and of accuracy O(*) in the
remainder of €. The solution of Eqs (1.4) and (1.5) for v, may be expressed as follows [6]:

v (r,¢)= gluzmcosm v; (r)sinkg

vj (r) = exp(—VET2r){t{ck 75 )cos(VET 2r)+ gk +.5)sin(vkT2r)} /2E

where {;, {, are the Fourier coefficients of {(¢)=b(@)u, +0(p)p(u)— f(9). Expressing the
function g, in accordance with formula (1.13) and determining A, from Egs (1.10), (1.14) and
(1.15) we can write the stresses (3.1)—(3.3) as follows:

c : 13 e k-
o, (p:-9)= E’C{pcl (cos@-sin ‘°)+5ka ‘et x
x (k(k - 1)(1 - pz) + 2p2)(coskq> —sinkg) —

-é‘,lg{ (r)coske + gg (r)sin kcp} (34

04 (p.9) = —€Cvy (r, ) +£727! C{6pg§ (cos @ —sin @) +
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+kizg2k"pk‘2 ((k+2)(k + Dp? - k(k ~ 1)) (cos kg - sin k)

Gpp (0, 9) =2 C{pcs (cos+sin @) + 27 Fcipt2((k + p? ~ k+1)x
k=2

x(cosk@ + sin ko) + ki::lk(g; (r)cosk — g; (r)sin k(p)} 3.5
8 ()= k"t exp(—E /215 cos(\ET2r) + ¢ sin(yT2r)} (3.6)

By Saint-Venant’s principle, if the front surface of the cylinder is free of loads, we obtain the
following expression for the axial stresses o,(p, ¢) in the cylinder cross-section, accurate to
within O(g?).

G, =-eCv(r,9) (KN))

4. CALCULATION OF THERMAL STRESSES IN A ROLLER OF
A CONTINUOUS BLANK CASTING

The rollers of a continuous blank casting, being in contact with incandescent metal, from which they
receive a powerful heat flux due to both direct contact and radiation, experience substantial thermal
stresses.

Let us apply the above computational formulae to calculate the thermoelastic stresses in a solid roller
of diameter 0.38 m, for a machine operating in the converter department of the Cherepovets Metallurgical
Complex, where the necessary natural measurements were carried out.

o,, Pax 10°
. o,, Pax10® 7
¥ /72’/ :
» 4 7
aJ
a.5 7 /
/]

KIN

7.
d o, Pax10° A g —
2
p /\ N

i\v\\v/tg\\ / ) :
V4 \/ M | K

Fic.2 Fic.3.
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Figure 1 illustrates the distribution of equivalent stresses found in accordance with the third durability
of hypothesis {7} in a cross-section through the middle of the contact zone of the roller with the bar
(=0} Fig. 2 shows the variation of the equivalent stresses along the perimeter of the roller in ifs surface
iayers. It is obvious from the graphs that the equivalent stresses become significant only i surface layers
of thickness amounting to {L1-0.15 of the total radius of the roller; in the internal layers, however, these
stresses are insigeificant, O the surface of the roller, the stwesses reachk their local maxims in the regions
of both the highest and lowest temperatures. Nowhere, however, do the strgsses approach the maximum
permissible values.

The muost intense stresses, in both absolute value and range of variation, are the axial stresses, whose
distrilmtion is shown in Fig. 3. At the end of the contact zone of the rolier with the bar, the axinl stresses
on the roller surface reach 14x10° Pa. Regardless of the frequency of rotation of the roller, the axial
stresses change sipn in zopes corresponding to angular coordinates of 140° apd 330°,

The magritude of the axial stresses and {heir range of variation depend significantly on the roller
rotation frequency: increasitig the rate of casting by 2 fector of six causes the maximum axial stresses to
fa1 to about half their previous vales,

Subject to the technological conditions considered here, the thermoelastio siresses do mod reach their
permissibie Jimits. Hence the non-uniformity of the temperature field cannot damage the rollers,

Sections 1-3 were written by M. 1. Letavin, Sec. 4 by N, L Shestakov and the Introduction
was written jointly by both authors.

We wish to thank the referce for useful discussions which helped to improve the contents of
the paper.
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