SINGULAR PERTURBATIONS USED TO SOLVE THE EQUATIONS OF THERMOELASTICITY IN A CROSS-SECTION OF A ROTATING CYLINDER \dagger

M. I. Letavin and N. I. Shestakov
Cherepovets

(Received 5 August 1991)

Abstract

An analysis is made of the two-dimensional stressed state in a cross-section of a cylinder rotating at constant angular velocity and experiencing thermal disturbances due to convective and radiative heat exchange with the external medium. The stress equations are used in the approximation of the uncoupled theory of thermoelasticity. Asymptotic formulae are derived for the stresses in terms of the small parameter $1 / \sqrt{ }(\mathrm{Pd})$ (where Pd is the Predvoditelev criterion). They enable one to take into account the varying nature of the beat-exchange coefficients along the perimeter of the cylinder, to form a qualitative picture of the stress distribution in the boundary-layer strip and in the rest of the domain, and to show that the stress state is determined by the non-axisymmetrical part of the temperature field.

In a previous study [1] \ddagger one of us constructed formulae to calculate the temperature in a cross-section of a cylinder of radius R, rotating at a fixed angular velocity ω and interacting with the external medium as governed by the law of radiative and convective heat exchange. We shall derive asymptotic formulae for the thermal stresses that arise in the cylinder, using the uncoupled theory of thermoelasticity [2].

In the laboratory system of polar coordinates (ρ, φ) under quasi-steady conditions, the temperature $T(\rho, \varphi)$ at a point of the cross-section with physical coordinates $(R \rho, \varphi)$ satisfies the equation [1]

$$
\begin{align*}
& \partial T / \partial \varphi=\varepsilon^{2} \Delta_{\rho, \varphi} T, \quad 0<\rho<1, \quad \varphi \in[0,2 \pi] \tag{0.1}\\
& \Delta_{\rho, \varphi}=\rho^{-1} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\rho^{-2} \frac{\partial^{2}}{\partial \varphi^{2}}
\end{align*}
$$

the boundary condition

$$
\begin{equation*}
\frac{\partial}{\partial \rho} T+b(\varphi) T+\sigma(\varphi) \beta(T)=f(\varphi), \quad \rho=1, \quad \varphi \in[0,2 \pi] \tag{0.2}
\end{equation*}
$$

and the condition of continuity as $\rho \rightarrow 0$

$$
\lim _{\rho \rightarrow 0} \rho \frac{\partial T}{\partial \rho}=0, \quad \varphi \in[0,2 \pi]
$$

\dagger Prikl.Mat. Mekh. Vol. 57, No. 2, pp. 124-132, 1993.
\ddagger LETAVIN M. I., On a singular problem of temperature control for a rotating cylinder in a quasi-steady regime. Vologda, 1989. Unpublished paper, deposited at VINITI 9.02.89, No. 895-B89.
where

$$
\begin{align*}
& \varepsilon^{2}=(\mathrm{Pd})^{-1}=a /\left(\omega R^{2}\right), \quad b(\varphi)=\alpha_{k}(\varphi) R / \lambda \\
& \sigma(\varphi)=\sigma_{r}(\varphi) R / \lambda, \quad \beta(T)=T^{4} \\
& f(\varphi)=b(\varphi) T_{k}(\varphi)+\sigma(\varphi) \beta\left(T_{r}(\varphi)\right) \tag{0.3}
\end{align*}
$$

where a is the thermal diffusivity, Pd is the Predvoditelev criterion, $b(\varphi)$ is the Biot criterion, λ is the thermal conductivity, $\alpha_{k}(\varphi)$ is the heat transfer coefficient, $T_{k}(\varphi)$ is the temperature of the medium with which the cylinder is exchanging heat convectively, $\sigma_{(}(\varphi)$ is the radiative heat exchange coefficient and $T,(\varphi)$ is the temperature of the medium with which the cylinder is exchanging heat by radiation.

The stresses in the cylinder cross-section will be determined in the two-dimensional deformed state approximation [2], using the stress function $F(\rho, \varphi)$, by the formulae

$$
\begin{equation*}
\sigma_{\rho}=\rho^{-1} \frac{\partial}{\partial \rho} F+\rho^{-2} \frac{\partial^{2}}{\partial \varphi^{2}} F, \quad \sigma_{\varphi}=\frac{\partial^{2}}{\partial \rho^{2}} F, \quad \sigma_{\rho \varphi}=-\frac{\partial}{\partial \rho} \rho^{-1} \frac{\partial}{\partial \varphi} F \tag{0.4}
\end{equation*}
$$

while F itself will be determined as the solution of the equation of the uncoupled quasi-steady theory of thermoelasticity

$$
\begin{equation*}
\Delta_{\rho, \varphi}^{2} F+C \Delta_{\rho, \varphi} T=0, \quad 0<\rho<1, \quad \varphi \in[0,2 \pi] \tag{0.5}
\end{equation*}
$$

satisfying the boundary conditions on the free surface

$$
\begin{equation*}
F=\partial F / \partial \rho=0, \quad \rho=1, \quad \varphi \in[0,2 \pi) \tag{0.6}
\end{equation*}
$$

and the boundedness conditions for the derivatives appearing in (0.4).
In Eq. (0.5) $C=\alpha_{T}(1-v)^{-1} E, \alpha_{T}$ is the coefficient of linear thermal expansion, v is Poisson's ratio, and E is Young's modulus.
The coefficient $\boldsymbol{\varepsilon}$ in Eq. (0.1) is a small parameter in the case of cylinders and rollers in metallurgical machinery [3]. this fact will be used to construct a solution of system (0.1), (0.2), (0.5) and (0.6).

From now on all functions considered will be 2π-periodic in φ.

1. CONSTRUCTION OF A FORMALASYMPTOTIC EXPANSION

According to the general theory [4], we are looking for an expansion of the function T in the form

$$
\begin{equation*}
T(\varepsilon, \rho, \varphi)=U(\varepsilon, \rho, \varphi)+V(\varepsilon, r, \varphi)=\sum_{n=0}^{\infty} \varepsilon^{u} u_{n}(\rho, \varphi)+\sum_{n=1}^{\infty} \varepsilon^{u} v_{n}(r, \varphi), \quad r=\frac{1-\rho}{\varepsilon} \tag{1.1}
\end{equation*}
$$

where U and V are the regular and boundary-layer parts of the expansion, so that $\mid v_{n}(r$, $\varphi) \mid<C_{1} \exp \left(-C_{2} r\right), r>0, C_{1}, C_{2}>0$.
We know [1] that the functions $u_{n}=$ const and v_{n} are found from the equations

$$
\begin{gather*}
\langle b(\varphi)\rangle u_{0}+\langle\sigma(\varphi)\rangle \beta\left(u_{0}\right)=\langle f(\varphi)\rangle \tag{1.2}\\
\left\langle b(\varphi)+\sigma(\varphi) \beta^{\prime}\left(u_{0}\right)\right) u_{n}=-\left\langle v_{n}(0, \varphi)\left(b(\varphi)+\sigma(\varphi) \beta^{\prime}\left(u_{0}\right)\right)\right\rangle+\left\langle P_{n}(\varphi)\right\rangle, \quad n=1,2, \ldots \tag{1.3}\\
M v_{n} \equiv\left(\frac{\partial}{\partial \varphi}-\frac{\partial}{\partial r^{2}}\right) v_{n}=-\sum_{k=1}^{n-1} r^{n-1-k} \frac{\partial}{\partial r} v_{k}+
\end{gather*}
$$

$$
\begin{gather*}
\quad+\sum_{k=1}^{n-2}(n-2-k) r^{n-2-k} \frac{\partial^{2}}{\partial \varphi^{2}} v_{k}, \quad r>0, \quad \varphi \in[0,2 \pi) \tag{1.4}\\
\frac{\partial v_{1}}{\partial r}=b(\varphi) u_{0}+\sigma(\varphi) \beta\left(u_{0}\right)-f(\varphi), \quad r=0, \quad \varphi \in[0,2 \pi) \tag{1.5}\\
\frac{\partial v_{n}}{\partial r}=\left(b(\varphi)+\sigma(\varphi) \beta^{\prime}\left(u_{0}\right)\right)\left(u_{n-1}+v_{n-1}\right)+P_{n-1}(\varphi), \quad r=0, \quad \varphi \in[0,2 \pi) \\
P_{n}=\sum_{k=2}^{n} \beta^{(k)}\left(u_{0}\right) q_{n, k},\left\langle P_{n}(\varphi)\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} P_{n}(\varphi) d \varphi
\end{gather*}
$$

where $q_{n, k}$ are polynomials in the variables $u_{l}+v_{l}(0, \varphi)(l=1, \ldots, n-1)$ of degree k. The sum in (1.4)-and throughout what follows-is, by definition, zero if the lower index of summation exceeds the upper one.

Under the conditions

$$
\begin{gather*}
b(\varphi), \quad \sigma(\varphi) \geqslant 0, \quad\langle b(\varphi)\rangle+\langle\sigma(\varphi)\rangle>0 \tag{1.6}\\
T_{r}(\varphi), \quad T_{k}(\varphi)>0 \tag{1.7}
\end{gather*}
$$

Eq. (1.2) has a unique positive solution $u_{0}>0$; It then follows from (1.6) that $\langle b(\varphi)+$ $\left.\sigma(\varphi) \beta\left(u_{0}\right)\right\rangle>0$ and $u_{n}(n=1,2, \ldots)$ are then uniquely determined from Eqs (1.3) Thus, the terms of the asymptotic series (1.1) are found successively: u_{0} from (1.2), then v_{1} from (1.4) and (1.5), u_{1} from (1.3), v_{2} from (1.4) and (1.5); and so on.

By analogy with (1.1), we construct an expansion of $F(\rho, \varphi)$ as

$$
\begin{gather*}
F(\varepsilon, \rho, \varphi)=H(\varepsilon, \rho, \varphi)+G(\varepsilon, r, \varphi)=\sum_{n=2}^{\infty} \varepsilon^{n} h_{n}(\rho, \varphi)+\sum_{n=3}^{\infty} \varepsilon^{n} g_{n}(r, \varphi) \tag{1.8}\\
\left|g_{n}(r, \varphi)\right|<C_{1} \exp \left(-C_{2} r\right), \quad r>0 \tag{1.9}
\end{gather*}
$$

where H is the regular part and G the boundary-layer part of the expansion.
Assuming that Eq. (0.5) holds separately for the regular part of the expansion H, we obtain equations for h_{n}

$$
\begin{equation*}
\Delta_{\rho, \varphi}^{2} h_{n}=0, \quad 0<\rho<1, \quad \varphi \in[0,2 \pi), \quad n=2,3, \ldots \tag{1.10}
\end{equation*}
$$

For the boundary-layer part G, we rewrite Eq. (0.5) in the form $\Delta_{\rho, \varphi}\left(\Delta_{\rho, \varphi} G+C V\right)=0$ and satisfy the simpler equation $\Delta_{\rho, \varphi} G+C V=0$, from which we obtain equations for g_{n}

$$
\begin{align*}
\frac{\partial^{2}}{\partial r^{2}} g_{n} & =-C v_{n-2}-Q_{n}, \quad n=3,4, \ldots, \quad r>0, \quad \varphi \in[0,2 \pi) \tag{1.11}\\
Q_{n} & =-\sum_{k=4}^{n} r^{n-k} \frac{\partial}{\partial r} g_{k-1}+\sum_{k=5}^{n}(n-k) r^{n-k} \frac{\partial^{2}}{\partial \varphi^{2}} g_{k-2} \tag{1.12}
\end{align*}
$$

We will write the solution of Eq. (1.11) satisfying an estimate of the form (1.9) as follows:

$$
\begin{equation*}
g_{n}(r, \varphi)=-\int_{r}^{\infty}(\varsigma-r)\left[C v_{n-2}(\zeta, \varphi)+Q_{n}(\zeta, \varphi)\right] d \zeta, \quad n=3,4, \ldots, r>0, \varphi \in[0,2 \pi] \tag{1.13}
\end{equation*}
$$

Substituting the expansion (1.8) into the boundary condition (0.6), we obtain the boundary conditions for the functions h_{n}

$$
\begin{align*}
& h_{2}(1, \varphi)=0, \quad h_{n}(1, \varphi)=-g_{n}(0, \varphi), \quad n=3,4 \ldots, \quad \varphi \in[0,2 \pi) \tag{1.14}\\
& \frac{\partial}{\partial \rho} h_{n}(1, \varphi)=-\frac{\partial}{\partial r} g_{n+1}(0, \varphi), \quad n=2,3, \ldots, \varphi \in[0,2 \pi) \tag{1.15}
\end{align*}
$$

One can then successively determine the coefficients of (1.8): g_{3} from (1.13), then h_{2} as a bounded solution of problem (1.10), (1.14) and (1.15), g_{4} from (1.13), then h_{3} from (1.10), (1.14) and (1.15), and so on.

It follows from the way in which the parts of the expansion (1.8) were determined that G is the thermoelastic part and H the elastic part of the series for the stress function [2].

2. JUSTIFICATION OF THE ASYMPTOTICEXPANSION

In Cartesian coordinates $x=\left(x_{1}, x_{2}\right), x_{1}=\rho \cos \varphi, x_{2}=\rho \sin \varphi$, we put $\Omega=\left\{\left(x_{1}, x_{2}\right)\right.$: $\left.x_{1}^{2}+x_{2}^{2}<1\right\}, \Gamma=\bar{\Omega} / \Omega$. The following asymptotic approximations will be taken for T and F

$$
\begin{align*}
& T_{N}(\varepsilon, x)=T_{N}(\varepsilon, \rho \cos \varphi, \rho \sin \varphi)=U_{N}(\varepsilon)+\Psi(\rho) V_{N}(\varepsilon, r, \varphi)= \\
& =\sum_{n=0}^{N} \varepsilon^{n} u_{n}+\Psi(\rho) \sum_{n=1}^{N} \varepsilon^{n} v_{n}(r, \varphi) \tag{2.1}\\
& F_{N}(\varepsilon, x)=F_{N}(\varepsilon, \rho \cos \varphi, \rho \sin \varphi)=H_{N}(\varepsilon, \rho, \varphi)+\Psi(\rho) G_{N}(\varepsilon, r, \varphi)= \\
& =\sum_{n=2}^{N+1} \varepsilon^{n} h_{n}(\rho, \varphi)+\Psi(\rho) \sum_{n=3}^{N+2} \varepsilon^{n} g_{n}(r, \varphi), \quad N=0,1,2, \ldots \tag{2.2}
\end{align*}
$$

where $\Psi(\rho) \in C^{\infty}([0,1)], \Psi(\rho)=0$ and $\rho \in[0,1 / 3], \Psi(\rho)=1$ for $\rho \in[1 / 3,1], 0 \leqslant \Psi(\rho) \leqslant 1$. The residuals of the exact solutions $T(\varepsilon, x)$ and $F(\varepsilon, x)$ and their approximations (2.1) and (2.2)

$$
\begin{equation*}
\delta T_{N}(\varepsilon, x)=T(\varepsilon, x)-T_{N}(\varepsilon, x), \quad \delta F_{N}(\varepsilon, x)=F(\varepsilon, x)-F_{N}(\varepsilon, x) \tag{2.3}
\end{equation*}
$$

are solutions of the equations

$$
\begin{align*}
& -\varepsilon^{2} \Delta_{x}\left(\delta T_{N}\right)+b_{i}\left(\delta T_{N}\right)_{x_{i}}=-W_{1}, \quad x \in \Omega \tag{2.4}\\
& b_{1}(x)=-x_{2}, \quad b_{2}(x)=x_{1}, \quad \Delta_{x}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}} \\
& \Delta_{x}^{2}\left(\delta F_{N}\right)+C \Delta_{x}\left(\delta T_{N}\right)=-W_{2}, \quad x \in \Omega \tag{2.5}
\end{align*}
$$

satisfying the boundary conditions

$$
\begin{gather*}
\left(\frac{\partial}{\partial \nu}+\alpha(x)+\sigma(x) \beta^{\prime}\left(u_{0}\right)\right) \delta T_{N}=-W_{3}, \quad x \in \Gamma \tag{2.6}\\
\delta F_{N}=-\varepsilon^{N+2} g_{N+2}, \quad \frac{\partial}{\partial \nu}\left(\delta F_{N}\right)=0, \quad x \in \Gamma \tag{2.7}
\end{gather*}
$$

where

$$
\begin{aligned}
& W_{1}(\varepsilon, x)=\left(\partial / \partial \varphi-\varepsilon^{2} \Delta_{\rho, \varphi}\right)\left(\psi(\rho) V_{N}(\varepsilon, r, \varphi)\right) \\
& W_{2}(\varepsilon, x)=\Delta_{x}^{2}\left(\psi(\rho) G_{N}(\varepsilon, r, \varphi)\right)+C \Delta_{x}\left(\psi(\rho) V_{N}(\varepsilon, r, \varphi)\right) \\
& W_{3}(\varepsilon, x)=W_{3}(\varepsilon, \cos \varphi, \sin \varphi)=\frac{\partial}{\partial \rho} T_{N}(\varepsilon, 1, \varphi)+ \\
& +\alpha(\varphi) T_{N}(\varepsilon, 1, \varphi)+\sigma(\varphi) \beta\left(u_{0}\right)-f(\varphi)+\sigma(\varphi)\left\{\beta \left(T_{N}(\varepsilon, 1, \varphi)+\right.\right. \\
& \left.\left.+\omega^{*}\right)-\beta^{\prime}\left(u_{0}\right) \omega^{*}-\beta\left(u_{0}\right)\right\}, \omega^{*}=\delta T_{N}
\end{aligned}
$$

$v=v(x)$ is the unit vector along the outward normal to Γ at x.

We introduce the auxiliary function by

$$
\begin{equation*}
g_{N+2}^{*}(x)=g_{N+2}^{*}(\rho \cos \varphi, \rho \sin \varphi)=g_{N+2}(0, \varphi,) \Psi(\rho), \quad x \in \Omega \tag{2.8}
\end{equation*}
$$

and set

$$
\begin{equation*}
y(x)=\delta F_{N}+\varepsilon^{N-2} g_{N+2}^{*} \tag{2.9}
\end{equation*}
$$

We then obtain an equation for $y(x)$ from (2.5)

$$
\begin{equation*}
\Delta_{x}^{2} y=-C \Delta_{x}\left(\delta T_{N}\right)-W_{2}+\varepsilon^{N+2} \Delta_{x}^{2} g_{N+2}^{*}, \quad x \in \Omega \tag{2.10}
\end{equation*}
$$

with zero boundary conditions

$$
\begin{equation*}
y=0, \quad \partial y / \partial v=0, \quad x \in \Gamma \tag{2.11}
\end{equation*}
$$

We now estimate $\|y\|_{w_{2}^{2}(\Omega)}$. Multiplying Eq. (2.10) by y, integrating by parts over Ω subject to condition (2.11) and using the form of the function W_{2}, we write

$$
\begin{align*}
& \int_{\Omega}\left(\Delta_{x} y\right)^{2} d x=\varepsilon^{N+2} \int_{\Omega}\left(\Delta_{x} y\right)\left(\Delta_{x} g_{N+2}^{*}\right) d x-C \int_{\Omega}\left(\Delta_{x} y\right) \delta T_{N} d x- \\
& -\int_{\Omega}\left(\Delta_{x} y\right)\left(\Delta_{x}\left(\Psi G_{N}\right)+C \Psi V_{N}\right) d x \tag{2.12}
\end{align*}
$$

Using Cauchy's inequality and the inequality [5]

$$
\|y\|_{w_{2}^{2}(\Omega)} \leqslant A_{1}\left(\int_{\Omega}\left(\Delta_{x} y\right)^{2} d x\right)^{y / 2}
$$

which holds by conditions (2.11), we derive the following estimate from (2.12)

$$
\begin{align*}
& \|y\|_{W_{2}^{2}(\Omega)} \leqslant A_{1}\left(\varepsilon^{N+2}\left\|\Delta_{x} 8_{N+2}^{*}\right\|_{L^{2}(\Omega)}+C \mid \delta T_{N} \|_{L^{2}(\Omega)}+\right. \\
& \left.+\left\|\Delta_{x}\left(\Psi G_{N}\right)+C \Psi V_{N}\right\|_{L^{2}(\Omega)}\right)=A_{1}\left(\varepsilon^{N+2} I_{1}+C I_{2}+I_{3}\right) \tag{2.13}
\end{align*}
$$

We must now estimate I_{1}, I_{2} and I_{3} in (2.13) To estimate I_{3}, we use the definitions of G_{N} and V_{N} in (2.1) and (2.2) and write

$$
\begin{align*}
& \Delta_{x}\left(\psi G_{N}\right)+C \Psi V_{N}=\Psi^{\prime}(\rho)\left(\rho^{-1} G_{N}(\varepsilon, r, \varphi)+2 \frac{\partial}{\partial \rho} G_{N}(\varepsilon, r, \varphi)+\right. \\
& +\Psi^{\prime \prime}(\rho) G_{N}(\varepsilon, r, \varphi)+\varepsilon^{N+1} \Psi(\rho)\left[-\rho^{-1} \sum_{n=2}^{N+1} r^{N-n+1} \frac{\partial}{\partial r} g_{n+1}+\right. \\
& \left.+\rho^{-2} \sum_{n=3}^{N+3} r^{N-n+1}\left(\frac{\partial^{2}}{\partial \varphi^{2}} g_{n}\right)(1+(N-n+1) \rho)\right] \tag{2.14}
\end{align*}
$$

Using the properties of $\Psi(\rho)$, we deduce from (2.14) that

$$
I_{3} \leqslant \varepsilon^{N+1} A_{2} \sum_{n=1}^{N+1}\left|\Psi(\rho) r^{N-n}\left(r \frac{\partial}{\partial r} g_{n+1}+\frac{\partial^{2}}{\partial \varphi^{2}} g_{n+1}\right)\right|_{L^{2}(\Omega)}+
$$

$$
\begin{equation*}
+A_{3} \sum_{n=3}^{N+2}\left\{\left\|\Psi^{\prime}(\rho) g_{n}(r, \varphi)\right\|_{L^{2}(\Omega)}+\left\|\Psi^{\prime}(\rho) \frac{\partial}{\partial r} g_{n}(r, \varphi)\right\|_{L^{2}(\Omega)}+\left\|\Psi^{\prime \prime}(\rho) g_{n}(r, \varphi)\right\|_{L^{2}(\Omega)}\right\} \tag{2.15}
\end{equation*}
$$

Assuming that the functions g_{n} satisfy the estimates

$$
\begin{equation*}
\int_{0}^{2 \pi} g_{n}^{2}(r, \varphi)+\left(\frac{\partial}{\partial r} g_{n}(r, \varphi)\right)^{2}+\left(\frac{\partial^{2}}{\partial \varphi^{2}} g_{n}(r, \varphi)\right)^{2} d \varphi \leqslant A_{4} \exp \left(-A_{5} r\right) \tag{2.16}
\end{equation*}
$$

($r \geqslant 0, n=3, \ldots, N+2$), we infer from (2.15) that

$$
\begin{equation*}
I_{3} \leqslant \varepsilon^{N+1} A_{6}+A_{7} \exp \left(-A_{5}(3 \varepsilon)^{-1}\right) \leqslant \varepsilon^{N+1} A_{8} \tag{2.17}
\end{equation*}
$$

where A_{6}, A_{7} and A_{8} depend only on A_{4}, A_{5} and N.
To estimate I_{1}, we note that, by (2.8)

$$
\begin{align*}
& \Delta_{x} g_{N+2}^{*}=\Delta_{\rho, \varphi}\left(g_{N+2}(0, \varphi) \Psi(\rho)\right)=g_{N+2}(0, \varphi) \rho^{-1} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho} \Psi(\rho)\right)+ \\
& +\rho^{-2} \Psi(\rho) \frac{\partial^{2}}{\partial \varphi^{2}} g_{N+2}(0, \varphi) \tag{2.18}
\end{align*}
$$

Therefore

$$
\begin{equation*}
I_{1} \leqslant A_{9} \tag{2.19}
\end{equation*}
$$

where A_{9} depends only on A_{4} (see (2.16))
To estimate I_{2} and justify inequality (2.16), we need a corollary of Sec. 5 in the paper cited in the footnote.

Lemma 1 . Let the functions $b(\varphi), \sigma(\varphi), T_{k}(\varphi), T_{r}(\varphi)$ in (0.2), (0.3) be 2π-periodic and absolutely continuous; assume that their derivatives are of bounded variation in $[0,2 \pi]$ and that conditions (1.6) and (1.7) are satisfied. Then for any integer $N_{1} \geqslant 0$ there exists $\varepsilon_{0}>0$ such that, for $\varepsilon \in\left(0, \varepsilon_{0}\right]\left(N=0,1, \ldots, N_{1}\right)$, the residual δT_{N} defined in (2.3) and satisfying Eqs (2.4) and (2.6) also satisfies the estimate

$$
\begin{equation*}
\left\|\delta T_{N}\right\|_{L^{2}(\Omega)} \leqslant A_{10} \varepsilon^{N+1} \tag{2.20}
\end{equation*}
$$

and the functions $v_{n}(r, \varphi)\left(n=1,2, \ldots, N_{1}\right)$ defined by Eqs (1.4) and (1.5) satisfy the inequalities

$$
\begin{equation*}
\int_{0}^{2 \pi} v_{n}^{2}(r, \varphi)+\left(\frac{\partial}{\partial r} v_{n}(r, \varphi)\right)^{2}+\left(\frac{\partial^{2}}{\partial \varphi^{2}} g_{n}(r, \varphi)\right)^{2} d \varphi \leqslant A_{11} \exp \left(-A_{12} r\right), r \geqslant 0 \tag{2.21}
\end{equation*}
$$

Estimate (2.16) follows from (2.21) in Lemma 1 and formulae (1.12) and (1.13) (the definition of $g_{n}(r, \varphi)$). Inequalities (2.17), (2.19) and (2.20), applied to (2.13), give

$$
\begin{equation*}
\|y\|_{W_{2}^{2}(\Omega)} \leqslant \varepsilon^{N+1} A_{13}, \varepsilon \in\left(0, \varepsilon_{0}\right] \tag{2.22}
\end{equation*}
$$

Using Eq (2.9) and inequality (2.22) we obtain

$$
\begin{align*}
& \left\|\delta F_{N}\right\|_{W_{2}^{2}(\Omega)} \leqslant\|y\|_{W_{2}^{2}(\Omega)}+\varepsilon^{N+2}\left\|g_{N+2}^{*}\right\|_{W_{2}^{2}(\Omega)} \leqslant \\
& \leqslant A_{13} \varepsilon^{N+1}+A_{14} \varepsilon^{N+2} \leqslant A_{15} \varepsilon^{N+1}, \quad \varepsilon \in\left(0, \varepsilon_{0}\right] \tag{2.23}
\end{align*}
$$

where the bound

$$
\left\|g_{N+2}^{*}\right\|_{N_{2}^{2}(\Omega)} \leqslant A_{14}
$$

is established by using a representation of type (2.18) for the derivatives of g_{N+2}^{*}.
We can thus formulate the following estimation theorem.
Theorem 1. With the same assumptions as in Lemma 1, for any integer $N_{1} \geqslant 0$ there exists $\varepsilon_{0}>0$ such that the stress function $F(\varepsilon, x)$ admits of an asymptotic representation (2.3), where $\delta F_{N}(\varepsilon, x)$ satisfies inequality (2.23) with a constant A_{15} independent of $N=0,1, \ldots, N_{1}, \varepsilon \in(0$, ε_{0}].

3. ASYMPTOTIC FORMULAE FOR THE STRESSES

Using (0.4), we can write the principal terms of the asymptotic expansions for the stresses

$$
\begin{gather*}
\sigma_{\rho}(\rho, \varphi)=\varepsilon^{2}\left[\rho^{-1}\left(\frac{\partial}{\partial \rho}+\rho^{-1} \frac{\partial^{2}}{\partial \varphi^{2}}\right) h_{2}(\rho, \varphi)-\frac{\partial}{\partial r} g_{3}(r, \varphi)\right] \tag{3.1}\\
\sigma_{\varphi}(\rho, \varphi)=\varepsilon \frac{\partial^{2}}{\partial r^{2}} g_{3}(r, \varphi)+\varepsilon^{2} \frac{\partial^{2}}{\partial \rho^{2}} h_{2}(\rho, \varphi) \tag{3.2}\\
\sigma_{\rho \varphi}(\rho, \varphi)=\varepsilon^{2}\left[-\frac{\partial}{\partial \rho}\left(\rho^{-1} \frac{\partial}{\partial \varphi} h_{2}(\rho, \varphi)\right)+\frac{\partial^{2}}{\partial r \partial \varphi} g_{3}(r, \varphi)\right] \tag{3.3}
\end{gather*}
$$

where $r=(1-\rho) / \varepsilon$, formulae (3.1) and (3.3) are of accuracy $O\left(\varepsilon^{3}\right)$, and formula (3.2) is of accuracy $O\left(\varepsilon^{2}\right)$ in a boundary layer of thickness of $O\left(\varepsilon^{2}\right)$, and of accuracy $O\left(\varepsilon^{3}\right)$ in the remainder of Ω. The solution of Eqs (1.4) and (1.5) for v_{1} may be expressed as follows [6]:

$$
\begin{aligned}
& v_{1}(r, \varphi)=\sum_{k=1}^{\infty} v_{k}^{+}(r) \cos k \varphi+v_{k}^{-}(r) \sin k \varphi \\
& v_{k}^{ \pm}(r)=\exp (-\sqrt{k / 2} r)\left\{ \pm\left(\varsigma_{k}^{s} \mp \varsigma_{k}^{c}\right) \cos (\sqrt{k / 2} r)+\left(\varsigma_{k}^{s} \pm \varsigma_{k}^{c}\right) \sin (\sqrt{k / 2} r)\right\} / \sqrt{2 k}
\end{aligned}
$$

where ζ_{k}^{c}, ζ_{k}^{s} are the Fourier coefficients of $\zeta(\varphi)=b(\varphi) u_{0}+\sigma(\varphi) \beta\left(u_{0}\right)-f(\varphi)$. Expressing the function g_{3} in accordance with formula (1.13) and determining h_{2} from Eqs (1.10), (1.14) and (1.15) we can write the stresses (3.1)-(3.3) as follows:

$$
\begin{align*}
& \sigma_{\rho}(\rho, \varphi)=\varepsilon^{2} C\left\{\rho \varsigma_{1}^{c}(\cos \varphi-\sin \varphi)+\frac{1}{2} \sum_{k=2}^{\infty} k^{-1} \zeta_{k}^{c} \rho^{k-2} \times\right. \\
& \times\left(k(k-1)\left(1-\rho^{2}\right)+2 \rho^{2}\right)(\cos k \varphi-\sin k \varphi)- \\
& \left.-\sum_{k=1}^{\infty} g_{k}^{+}(r) \cos k \varphi+g_{\bar{k}}(r) \sin k \varphi\right\} \tag{3.4}\\
& \sigma_{\varphi}(\rho, \varphi)=-\varepsilon C v_{1}(r, \varphi)+\varepsilon^{2} 2^{-1} C\left\{\sigma \rho \zeta_{1}^{c}(\cos \varphi-\sin \varphi)+\right.
\end{align*}
$$

$$
\begin{align*}
& \left.+\sum_{k=2}^{\infty} \zeta_{k}^{c} k^{-1} \rho^{k-2}\left((k+2)(k+1) \rho^{2}-k(k-1)\right)(\cos k \varphi-\sin k \varphi)\right\} \\
& \sigma_{\rho \varphi}(\rho, \varphi)=\varepsilon^{2} C\left\{\rho 5_{1}^{c}(\cos \varphi+\sin \varphi)+2^{-1} \sum_{k=2}^{\infty} \zeta_{k}^{c} \rho^{k-2}\left((k+1) \rho^{2}-k+1\right) \times\right. \\
& \left.\times(\cos k \varphi+\sin k \varphi)+\sum_{k=1}^{\infty} k\left(g_{k}^{-}(r) \cos k \varphi-g_{k}^{+}(r) \sin k \varphi\right)\right\} \tag{3.5}
\end{align*}
$$

$$
\begin{equation*}
8_{k}^{ \pm}(r)=k^{-1} \exp (-\sqrt{k} / 2 r)\left\{ \pm \varsigma_{k}^{c} \cos (\sqrt{k / 2} r)+\zeta_{k}^{s} \sin (\sqrt{k / 2} r)\right\} \tag{3.6}
\end{equation*}
$$

By Saint-Venant's principle, if the front surface of the cylinder is free of loads, we obtain the following expression for the axial stresses $\sigma_{z}(\rho, \varphi)$ in the cylinder cross-section, accurate to within $O\left(\varepsilon^{2}\right)$.

$$
\begin{equation*}
\sigma_{z}=-\varepsilon C v_{1}(r, \varphi) \tag{3.7}
\end{equation*}
$$

4. CALCULATION OF THERMAL STRESSES IN A ROLLER OF

 A CONTINUOUS BLANK CASTINGThe rollers of a continuous blank casting, being in contact with incandescent metal, from which they receive a powerful heat flux due to both direct contact and radiation, experience substantial thermal stresses.
Let us apply the above computational formulae to calculate the thermoelastic stresses in a solid roller of diameter 0.38 m , for a machine operating in the converter department of the Cherepovets Metallurgical Complex, where the necessary natural measurements were carried out.

Fig.1.

Fig. 2.

Fig. 3.

Figure 1 illastrates the distribution of equivalent stresses found in accordance with the third durability of hypothesis [7] in a crosssection through the middle of the contact zone of the roller with the bar ($\varphi=0$); Fig. 2 shows the variation of the equivalent stresses along the perimeter of the roller in its surface layers. It is obvious from the graphs that the equivalent stresses become signiticant onfy in surface layers of thickness amounting to $0.1-0.15$ of the total radius of the roller; in the internal layers, however, these stresses are insignificant. On the surface of the roller, the stresses reach their local maxima in the regions of both the highest and lowest temperatures. Nowhere, however, do the stresses approach the maximum pernissible values.

The most incense stresses, in both absolute value and range of variation, are the axiat stresses, whose distribution is shown in Fie. 3. At the end of the contact zone of the roller with the bar, the axial stresses on the roller surface reach $1.4 \times 10^{2} \mathrm{~Pa}$. Regardless of the frequency of rotation of the roller, the axial stresses change sign in zones corresponding to angular coordinates of 140° and 330°.

The magnitude of the axial stresses and their fange of variation depend significantly on the roller rotation frequency: increasing the rate of casting by a factor of six causes the maximum axial stresses to fall to about half their previous value.

Subject to the technological conditions considered here, the themoelastio stresses do not reach their permissible limits. Hence the non-uniformity of the temperature field cannot damage the rollers.

Sections $1-3$ were written by M. I. Letavin, Sec. 4 by N. I. Shestakov and the Introduction was written jointly by both authors.

We wish to thank the referee for useful discussions which helped to improve the contents of the paper.

REFERENCES

1. LETAVIN M. I. On the bondary layer in the problem of teating of a rotating cylinder. In Partiat Differential Equationss: Interuniversity Coltection of Scientifo Papers, pp. 58-66. Leniagrad Gos, Ped. Inst., Leningrad, 1089.
2. KOVAIENKO A. D., Elements of Thermodostixity. Naukova Dumba, Kiev, 1970.
3. TYLKIN M. A., YALOVOI N. N. and POLDKHIN P. I., Tempergtare and Stresses in Components of Metallurgical Machinery. Vysghaya Shkola, Moscow, 1970.
4. BUTVZOV V. F., Singular Pertarbations, Mathenatics, Cybemetios, 19891. Zsanie, Mostow, 1988.
5. LADYZHENSKAYA O. A. and URAL'TSEVA N. N., Linear and Quasi-hinear Equations of Eliptic Type Naula, Moscew, 1973.
6. ZAPENKOVA G. I. LETAVIN M. I. and SHESTAKOV N. I., The femperature field of a rotating cylinder. Ingh.Fiz. 27. 59, 169-170, 1990 .
 Mashinestroyeniye, Moscow, 1979.
